Citation: | MI Zhi, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna[J].Chinese Optics, 2020, 13(1): 121-130.doi:10.3788/CO.20201301.0121 |
[1] |
邢笑雪, 王宪伟, 秦宏伍, 等. PbSe量子点近红外光源的CH
4气体检测[J].中国光学, 2018, 11(4):662-668.
//www.illord.com/CN/abstract/abstract9603.shtml
XING X X, WANG X W, QIN H W,
et al.. CH
4detection based on near-infrared luminescence of PbSe quantum dots[J].
Chinese Optics, 2018, 11(4):662-668. (in Chinese)
//www.illord.com/CN/abstract/abstract9603.shtml
|
[2] |
姜相宇, 付华, 张敏, 等.二硫化钼量子点荧光传感器检测盐酸多西环素的研究[J].分析化学, 2018, 46(7):1077-1083.
http://d.old.wanfangdata.com.cn/Periodical/fxhx201807011
JIANG X Y, FU H, ZHANG M,
et al.. Molybdenum disulfide quantum dots-based fluorescence sensor for detection of doxycycline Hyclate[J].
Chinese Journal of Analytical Chemistry, 2018, 46(7):1077-1083. (in Chinese)
http://d.old.wanfangdata.com.cn/Periodical/fxhx201807011
|
[3] |
PARFENOV A, GRYCZYNSKI I, MALICKA J,
et al.. Enhanced fluorescence from fluorophores on fractal silver surfaces[J].
The Journal of Physical Chemistry B, 2003, 107(34):8829-8833.
doi:10.1021/jp022660r
|
[4] |
邹小波, 史永强, 郑悦, 等.基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J].分析化学, 2018, 46(6):960-968.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201806022
ZOU X B, SHI Y Q, ZHENG Y,
et al.. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect[J].
Chinese Journal of Analytical Chemistry, 2018, 46(6):960-968. (in Chinese)
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201806022
|
[5] |
任升, 刘丽炜, 李金华, 等.纳米尺度下的局域场增强研究进展[J].中国光学, 2018, 11(1):31-46.
//www.illord.com/CN/abstract/abstract9558.shtml
REN SH, LIU L W, LI J H,
et al.. Advances in the local field enhancement at nanoscale[J].
Chinese Optics, 2018, 11(1):31-46. (in Chinese)
//www.illord.com/CN/abstract/abstract9558.shtml
|
[6] |
ASLAN K, PREVITE M J R, ZHANG Y X,
et al.. Metal-enhanced fluorescence from nanoparticulate zinc films[J].
The Journal of Physical Chemistry C, 2008, 112(47):18368-18375.
doi:10.1021/jp806790u
|
[7] |
KOSAKO T, KADOYA Y, HOFMANN H F. Directional control of light by a nano-optical Yagi-Uda antenna[J].
Nature Photonics,2010, 4:312-315.
doi:10.1038/nphoton.2010.34
|
[8] |
ANDERSEN S K H, BOGDANOV S, MAKAROVA O,
et al.. Hybrid plasmonic bullseye antennas for efficient photon collection[J].
ACS Photonics, 2018, 5(3):692-698.
doi:10.1021/acsphotonics.7b01194
|
[9] |
RUTCKAIA V, HEYROTH F, NOVIKOV A,
et al.. Quantum dot emission driven by Mie resonances in silicon nanostructures[J].
Nano Letters, 2017, 17(11):6886-6892.
doi:10.1021/acs.nanolett.7b03248
|
[10] |
ALBELLA P, POYLI M A, SCHMIDT M K,
et al.. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers[J].
The Journal of Physical Chemistry C, 2013, 117(26):13573-13584.
doi:10.1021/jp4027018
|
[11] |
CAMBIASSO J, KÖNIG M, CORTÉS E,
et al.. Surface-enhanced spectroscopies of a molecular monolayer in an all-dielectric nanoantenna[J].
ACS Photonics, 2018, 5(4):1546-1557.
doi:10.1021/acsphotonics.7b01604
|
[12] |
BOUCHET D, MIVELLE M, PROUST J,
et al.. Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas[J].
Physical Review Applied, 2016, 6(6):064016.
doi:10.1103/PhysRevApplied.6.064016
|
[13] |
CALDAROLA M, ALBELLA P, CORTÉS E,
et al.. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion[J].
Nature Communications, 2015, 6(1):7915.
doi:10.1038/ncomms8915
|
[14] |
REGMI R, BERTHELOT J, WINKLER P M,
et al.. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules[J].
Nano Letters, 2016, 16(8):5143-5151.
doi:10.1021/acs.nanolett.6b02076
|
[15] |
GÉRARD D, DEVILEZ A, AOUANI H,
et al.. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere[J].
Journal of the Optical Society of America B, 2009, 26(7):1473-1478.
doi:10.1364/JOSAB.26.001473
|
[16] |
YAN Y ZH, ZENG Y, WU Y,
et al.. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays[J].
Optics Express, 2014, 22(19):23552-23564.
doi:10.1364/OE.22.023552
|
[17] |
SUN S, WU L, BAI P,
et al.. Fluorescence enhancement in visible light:dielectric or noble metal?[J].
Physical Chemistry Chemical Physics, 2016, 18(28):19324-19335.
doi:10.1039/C6CP03303B
|
[18] |
姜杰, 李士浩, 严一楠, 等.氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究[J].发光学报, 2017, 38(12):1567-1574.
http://d.old.wanfangdata.com.cn/Periodical/fgxb201712002
JIANG J, LI SH H, YAN Y N,
et al.. Preparation of N-doped fluorescent carbon dots with high quanturn yeild for In-vitro bioimaging[J].
Chinese Journal of Luminescense, 2017, 38(12):1567-1574.
http://d.old.wanfangdata.com.cn/Periodical/fgxb201712002
|
[19] |
PAPASIMAKIS N, FEDOTOV V A, SAVINOV V,
et al.. Electromagnetic toroidal excitations in matter and free space[J].
Nature Materials, 2016, 15(3):263-271.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f988e27307430203d81a778edcef1f2b
|
[20] |
LU G W, ZHANG T Y, LI W Q,
et al.. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J].
The Journal of Physical Chemistry C, 2011, 115(32):15822-15828.
doi:10.1021/jp203317d
|
[21] |
蔡小舒, 苏明旭, 沈建琪, 等.颗粒粒度测量技术及应用[M].北京:化学工业出版社, 2010.
CAI X SH, SHU M X, SHEN J Q,
et al..
Particle Size Measurement Technology and Application[M]. Beijing:Chemical Industry Press, 2010. (in Chinese)
|
[22] |
张文君, 翟保才, 许键. ZnO作为电子传输层的绿光胶体CdSe量子点LED(QD-LED)的制备与表征[J].发光学报, 2012, 33(11):1171-1176.
http://d.old.wanfangdata.com.cn/Periodical/fgxb201211003
ZHANG W J, ZHAI B C, XU J. Fabrication and characterization of green CdSe quantumn dot light emitting diodes with ZnO electron-transport layer[J].
Chinese Journal of Luminescence, 2012, 33(11):1171-1176. (in Chinese)
http://d.old.wanfangdata.com.cn/Periodical/fgxb201211003
|
[23] |
CAMBIASSO J, GRINBLAT G, LI Y,
et al.. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas[J].
Nano Letters, 2017, 17(2):1219-1225.
doi:10.1021/acs.nanolett.6b05026
|
[24] |
DEVILEZ A, STOUT B, BONOD N. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission[J].
ACS Nano, 2010, 4(6):3390-3396.
doi:10.1021/nn100348d
|
[25] |
JIAO X J, BLAIR S. Optical antenna design for fluorescence enhancement in the ultraviolet[J].
Optics Express, 2012, 20(28):29909-29922.
doi:10.1364/OE.20.029909
|
[26] |
DAS G M, RINGNE A B, DANTHAM V R,
et al.. Numerical investigations on photonic nanojet mediated surface enhanced raman scattering and fluorescence techniques[J].
Optics Express, 2017, 25(17):19822-19831.
doi:10.1364/OE.25.019822
|
[27] |
PALIK E D. Handbook of Optical Constants of Solids[M]. San Diego:Academic Press, 1998.
|
[28] |
BAKKER R M, PERMYAKOV D, YU Y F,
et al.. Magnetic and electric hotspots with silicon nanodimers[J].
Nano
Letters, 2015, 15(3):2137-2142.
doi:10.1021/acs.nanolett.5b00128
|
[29] |
CHEN ZH G, TAFLOVE A, BACKMAN V. Photonic nanojet enhancement of backscattering of light by nanoparticles:a potential novel visible-light ultramicroscopy technique[J].
Optics Express, 2004, 12(7):1214-1220.
doi:10.1364/OPEX.12.001214
|