Volume 13Issue 1
Feb. 2020
Turn off MathJax
Article Contents
MI Zhi, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna[J]. Chinese Optics, 2020, 13(1): 121-130. doi: 10.3788/CO.20201301.0121
Citation: MI Zhi, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna[J].Chinese Optics, 2020, 13(1): 121-130.doi:10.3788/CO.20201301.0121

Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna

doi:10.3788/CO.20201301.0121
Funds:

National Natural Science Foundation of China11674239

National Natural Science Foundation of China61575139

National Natural Science Foundation of China61575138

Program for the Top Young Talents of Shanxi Province

Program for the Sanjin Outstanding Talents of China

More Information
  • Corresponding author:CHEN Zhi-hui, E-mail:huixu@126.com
  • Received Date:04 Apr 2019
  • Rev Recd Date:14 May 2019
  • Publish Date:01 Feb 2020
  • In nano-photonics, the enhancement of the intensity of directional luminescence in fluorescent substances is a key issue for many applications. In order to optimize the fluorescence enhancement capability of dielectric nano-antennas, a dielectric hybrid nano-antenna composed of a silicon nanosphere dimer and a TiO 2microsphere is proposed. Quantum yield enhancement, fluorescence collection efficiency enhancement and fluorescence excitation rate enhancement are all studied using the finite difference time domain method to illustrate the fluorescence enhancement effect of the dielectric sphere hybrid nano-antenna. The results show that the hybrid nano-antenna can not only solve the problem with low quantum yield using the single TiO 2microsphere, but can also compensate for low fluorescence collection efficiency using only the silicon nanosphere dimer. Due to the advantages possessed by both silicon nanosphere dimers and TiO 2microspheres in fluorescence enhancement, the quantum yield and fluorescence collection efficiency of this hybrid nano-antenna are enhanced by about 4 and 2 times, respectively. Moreover, due to the further enhancement effect on the fluorescence excitation process with the silicon nanosphere dimer and the TiO 2microsphere, a higher fluorescence directional enhancement factor can be achieved. When the emission wavelength is at a quantum dot central wavelength of 523 nm, the fluorescence directional enhancement can be up to 3 064 times than that of original fluorescence.

  • loading
  • [1]
    邢笑雪, 王宪伟, 秦宏伍, 等. PbSe量子点近红外光源的CH 4气体检测[J].中国光学, 2018, 11(4):662-668. //www.illord.com/CN/abstract/abstract9603.shtml

    XING X X, WANG X W, QIN H W, et al.. CH 4detection based on near-infrared luminescence of PbSe quantum dots[J]. Chinese Optics, 2018, 11(4):662-668. (in Chinese) //www.illord.com/CN/abstract/abstract9603.shtml
    [2]
    姜相宇, 付华, 张敏, 等.二硫化钼量子点荧光传感器检测盐酸多西环素的研究[J].分析化学, 2018, 46(7):1077-1083. http://d.old.wanfangdata.com.cn/Periodical/fxhx201807011

    JIANG X Y, FU H, ZHANG M, et al.. Molybdenum disulfide quantum dots-based fluorescence sensor for detection of doxycycline Hyclate[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7):1077-1083. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201807011
    [3]
    PARFENOV A, GRYCZYNSKI I, MALICKA J, et al.. Enhanced fluorescence from fluorophores on fractal silver surfaces[J]. The Journal of Physical Chemistry B, 2003, 107(34):8829-8833. doi:10.1021/jp022660r
    [4]
    邹小波, 史永强, 郑悦, 等.基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J].分析化学, 2018, 46(6):960-968. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201806022

    ZOU X B, SHI Y Q, ZHENG Y, et al.. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6):960-968. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201806022
    [5]
    任升, 刘丽炜, 李金华, 等.纳米尺度下的局域场增强研究进展[J].中国光学, 2018, 11(1):31-46. //www.illord.com/CN/abstract/abstract9558.shtml

    REN SH, LIU L W, LI J H, et al.. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1):31-46. (in Chinese) //www.illord.com/CN/abstract/abstract9558.shtml
    [6]
    ASLAN K, PREVITE M J R, ZHANG Y X, et al.. Metal-enhanced fluorescence from nanoparticulate zinc films[J]. The Journal of Physical Chemistry C, 2008, 112(47):18368-18375. doi:10.1021/jp806790u
    [7]
    KOSAKO T, KADOYA Y, HOFMANN H F. Directional control of light by a nano-optical Yagi-Uda antenna[J]. Nature Photonics,2010, 4:312-315. doi:10.1038/nphoton.2010.34
    [8]
    ANDERSEN S K H, BOGDANOV S, MAKAROVA O, et al.. Hybrid plasmonic bullseye antennas for efficient photon collection[J]. ACS Photonics, 2018, 5(3):692-698. doi:10.1021/acsphotonics.7b01194
    [9]
    RUTCKAIA V, HEYROTH F, NOVIKOV A, et al.. Quantum dot emission driven by Mie resonances in silicon nanostructures[J]. Nano Letters, 2017, 17(11):6886-6892. doi:10.1021/acs.nanolett.7b03248
    [10]
    ALBELLA P, POYLI M A, SCHMIDT M K, et al.. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers[J]. The Journal of Physical Chemistry C, 2013, 117(26):13573-13584. doi:10.1021/jp4027018
    [11]
    CAMBIASSO J, KÖNIG M, CORTÉS E, et al.. Surface-enhanced spectroscopies of a molecular monolayer in an all-dielectric nanoantenna[J]. ACS Photonics, 2018, 5(4):1546-1557. doi:10.1021/acsphotonics.7b01604
    [12]
    BOUCHET D, MIVELLE M, PROUST J, et al.. Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas[J]. Physical Review Applied, 2016, 6(6):064016. doi:10.1103/PhysRevApplied.6.064016
    [13]
    CALDAROLA M, ALBELLA P, CORTÉS E, et al.. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion[J]. Nature Communications, 2015, 6(1):7915. doi:10.1038/ncomms8915
    [14]
    REGMI R, BERTHELOT J, WINKLER P M, et al.. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules[J]. Nano Letters, 2016, 16(8):5143-5151. doi:10.1021/acs.nanolett.6b02076
    [15]
    GÉRARD D, DEVILEZ A, AOUANI H, et al.. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere[J]. Journal of the Optical Society of America B, 2009, 26(7):1473-1478. doi:10.1364/JOSAB.26.001473
    [16]
    YAN Y ZH, ZENG Y, WU Y, et al.. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays[J]. Optics Express, 2014, 22(19):23552-23564. doi:10.1364/OE.22.023552
    [17]
    SUN S, WU L, BAI P, et al.. Fluorescence enhancement in visible light:dielectric or noble metal?[J]. Physical Chemistry Chemical Physics, 2016, 18(28):19324-19335. doi:10.1039/C6CP03303B
    [18]
    姜杰, 李士浩, 严一楠, 等.氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究[J].发光学报, 2017, 38(12):1567-1574. http://d.old.wanfangdata.com.cn/Periodical/fgxb201712002

    JIANG J, LI SH H, YAN Y N, et al.. Preparation of N-doped fluorescent carbon dots with high quanturn yeild for In-vitro bioimaging[J]. Chinese Journal of Luminescense, 2017, 38(12):1567-1574. http://d.old.wanfangdata.com.cn/Periodical/fgxb201712002
    [19]
    PAPASIMAKIS N, FEDOTOV V A, SAVINOV V, et al.. Electromagnetic toroidal excitations in matter and free space[J]. Nature Materials, 2016, 15(3):263-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f988e27307430203d81a778edcef1f2b
    [20]
    LU G W, ZHANG T Y, LI W Q, et al.. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The Journal of Physical Chemistry C, 2011, 115(32):15822-15828. doi:10.1021/jp203317d
    [21]
    蔡小舒, 苏明旭, 沈建琪, 等.颗粒粒度测量技术及应用[M].北京:化学工业出版社, 2010.

    CAI X SH, SHU M X, SHEN J Q, et al.. Particle Size Measurement Technology and Application[M]. Beijing:Chemical Industry Press, 2010. (in Chinese)
    [22]
    张文君, 翟保才, 许键. ZnO作为电子传输层的绿光胶体CdSe量子点LED(QD-LED)的制备与表征[J].发光学报, 2012, 33(11):1171-1176. http://d.old.wanfangdata.com.cn/Periodical/fgxb201211003

    ZHANG W J, ZHAI B C, XU J. Fabrication and characterization of green CdSe quantumn dot light emitting diodes with ZnO electron-transport layer[J]. Chinese Journal of Luminescence, 2012, 33(11):1171-1176. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201211003
    [23]
    CAMBIASSO J, GRINBLAT G, LI Y, et al.. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas[J]. Nano Letters, 2017, 17(2):1219-1225. doi:10.1021/acs.nanolett.6b05026
    [24]
    DEVILEZ A, STOUT B, BONOD N. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission[J]. ACS Nano, 2010, 4(6):3390-3396. doi:10.1021/nn100348d
    [25]
    JIAO X J, BLAIR S. Optical antenna design for fluorescence enhancement in the ultraviolet[J]. Optics Express, 2012, 20(28):29909-29922. doi:10.1364/OE.20.029909
    [26]
    DAS G M, RINGNE A B, DANTHAM V R, et al.. Numerical investigations on photonic nanojet mediated surface enhanced raman scattering and fluorescence techniques[J]. Optics Express, 2017, 25(17):19822-19831. doi:10.1364/OE.25.019822
    [27]
    PALIK E D. Handbook of Optical Constants of Solids[M]. San Diego:Academic Press, 1998.
    [28]
    BAKKER R M, PERMYAKOV D, YU Y F, et al.. Magnetic and electric hotspots with silicon nanodimers[J]. Nano Letters, 2015, 15(3):2137-2142. doi:10.1021/acs.nanolett.5b00128
    [29]
    CHEN ZH G, TAFLOVE A, BACKMAN V. Photonic nanojet enhancement of backscattering of light by nanoparticles:a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7):1214-1220. doi:10.1364/OPEX.12.001214
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(1699) PDF downloads(54) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map