Volume 13Issue 1
Feb. 2020
Turn off MathJax
Article Contents
CHEN Sheng-nan, JIANG Hui-lin, WANG Chun-yan, CHEN Zhe. Design of off-axis four-mirror afocal optical system with high magnification[J]. Chinese Optics, 2020, 13(1): 179-188. doi: 10.3788/CO.20201301.0179
Citation: CHEN Sheng-nan, JIANG Hui-lin, WANG Chun-yan, CHEN Zhe. Design of off-axis four-mirror afocal optical system with high magnification[J].Chinese Optics, 2020, 13(1): 179-188.doi:10.3788/CO.20201301.0179

Design of off-axis four-mirror afocal optical system with high magnification

doi:10.3788/CO.20201301.0179
Funds:

Supported by National Natural Science Foundation of ChinaNo. 91838301

More Information
  • Corresponding author:JIANG Hui-lin, E-mail:hljiang@cust.edu.cn
  • Received Date:05 Aug 2019
  • Rev Recd Date:30 Aug 2019
  • Publish Date:01 Feb 2020
  • The space gravitational wave detection is realized by adopting the technology of heterodyne laser interferometry. The accuracy and noise level of the measurement are extremely rigorous. As an important part of space-based gravitational wave observatory, telescope plays the role of laser signal transceiver, and is characterized by high magnification, high image quality, high similarity of wave-front error over the field of view and extraordinary ability to suppress stray light. Aiming at above requirements, methods of design and analysis of the off-axis four-mirror afocal optical system with high magnification are investigated. Based on the theory of primary aberration, the design method of initial structure is explored. The system has an intermediate image plane and an available exit pupil, which facilitates stray light suppression and integration with the scientific interferometer. The wave-front similarity merit function is established. After optimization, the entrance pupil diameter is 200 mm, the magnification is 40. The Root-Mean-Square (RMS) wave-front error is better than 0.005 λand the Peak-to-Valley (PV) value is less than 0.023 λ, moreover, the RMS of wave-front similarity residuals are better than 0.000 8 λ( λ=1 064 nm) within the ±8 μrad scientific field of view. Over the field of regard for acquisition, the imaging quality is close to the diffraction limit. The tolerance of the system is analyzed and meets the requirements of space-based gravitational wave detection.

  • loading
  • [1]
    JENNRICH O. LISA technology and instrumentation[J]. Classical and Quantum Gravity, 2009, 26(15): 153001. doi:10.1088/0264-9381/26/15/153001
    [2]
    HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686. doi:10.1093/nsr/nwx116
    [3]
    LIVAS J C, ARSENOVIC P, CROW J A, et al.. Telescopes for space-based gravitational wave missions[J]. Optical Engineering, 2013, 52(9): 091811. doi:10.1117/1.OE.52.9.091811
    [4]
    VERLAAN A L, HOGENHUIS H, PIJNENBURG J, et al.. LISA telescope assembly optical stability characterization for ESA[C]. International Conference on Space OpticsICSO 2012. International Society for Optics and Photonics, 2017, 10564: 105640K. https://www.researchgate.net/publication/258719157_LISA_Telescope_Assembly_Optical_Stability_Characterization_for_ESA
    [5]
    刘河山, 高瑞弘, 罗子人, 等.空间引力波探测中的绝对距离测量及通信技术[J].中国光学, 2019, 12(3):486-492. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201903008

    LIU H SH, GAO R H, LUO Z R, et al.. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 486-492. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201903008
    [6]
    SANKAR S, LIVAS J. Testing and characterization of a prototype telescope for the evolved Laser Interferometer Space Antenna (eLISA)[C]. Space Telescopes and Instrumentation2016: Optical, Infrared, and Millimeter Wave. International Society for Optics and Photonics, 2016, 9904: 99045A.
    [7]
    王智, 沙巍, 陈哲, 等.空间引力波探测望远镜初步设计与分析[J].中国光学, 2018, 11(1):131-151. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201801014

    WANG ZH, SHA W, CHEN ZH, et al..Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics, 2018, 11(1), 131-151. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201801014
    [8]
    孙可, 江厚满, 程湘爱.强光辐照下主镜表面散射引起的视场内杂光分布[J].光学 精密工程, 2011, 19(2): 493-499. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201102040

    SUN K, JIANG H M, CHENG X A. Distribution of in-field stray light due to surface scattering from primary mirror illuminated by intense light[J]. Opt. Precision Eng., 2011, 19(2): 493-499. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201102040
    [9]
    SHIRI R, STEIN R, MURPHY K, et al.. Fabrication of petal-shaped masks for suppression of the on-axis poisson spot in telescope systems[J]. Review of Scientific Instruments, 2016, 87(4): 043112. doi:10.1063/1.4945793
    [10]
    高瑞弘, 刘河山, 罗子人, 等.太极计划 指向调控方案介绍[J].中国光学, 2019, 12(3): 425-431. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201903002

    GAO R H, LIU H SH, LUO Z R, et al.. Introduction of laser pointing scheme in the Taiji program[J]. Chinese Optics, 2019, 12(3): 425-431. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201903002
    [11]
    SCHUSTER S. Tilt-to-length coupling and diffraction aspects in satellite interferometry[D]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2017.
    [12]
    SCHUSTER S, WANER G, TRÖBS M, et al.. Vanishing tilt-to-length coupling for a singular case in two-beam laser interferometers with Gaussian beams[J]. Applied optics, 2015, 54(5): 1010-1014. doi:10.1364/AO.54.001010
    [13]
    WANNER G. Complex optical systems in space: numerical modelling of the heterodyne interferometery of LISA Pathfinder and LISA[D]. Hannover: Albert Enstein Institute & University of Hannover, 2010.
    [14]
    马烈, 陈波.三维成像载荷共孔径光学系统设计[J].光学 精密工程, 2018, 26(9): 2326-2333. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201809026

    MA L, CHEN B. Optical design of a co-aperture system for 3-D remote sensing payload[J]. Opt. Precision Eng., 2018, 26(9): 2326-2333. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201809026
    [15]
    梅贵, 翟岩, 曲贺盟, 等.离轴三反系统的无应力装调[J].光学 精密工程, 2015, 23(12): 3414-3421. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201512018

    MEI G, ZHAI Y, QU H M, et al.. Stress-free alignment of off-axis three-mirror system[J]. Opt. Precision Eng., 2015, 23(12): 3414-3421. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201512018
    [16]
    杜福嘉, 李朋辉.低温环境下材料膨胀系数和润滑对望远镜负载扭矩的影响[J].光学 精密工程, 2018, 26(3): 616-623. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201803013

    DU F J, LI P H. Effect of material expansion coefficient and lubrication on telescope load torque under low temperature[J]. Opt. Precision Eng., 2018, 26(3): 616-623. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201803013
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)/Tables(7)

    Article views(1812) PDF downloads(131) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map