Volume 4Issue 5
Oct. 2011
Turn off MathJax
Article Contents
CHEN Xiao-lin, WANG Yan-jie. Infrared and visible image fusion based on nonsubsampled Contourlet transform[J]. Chinese Optics, 2011, 4(5): 489-496.
Citation: CHEN Xiao-lin, WANG Yan-jie. Infrared and visible image fusion based on nonsubsampled Contourlet transform[J].Chinese Optics, 2011, 4(5): 489-496.

Infrared and visible image fusion based on nonsubsampled Contourlet transform

  • Received Date:21 Jul 2011
  • Rev Recd Date:23 Aug 2011
  • Publish Date:25 Oct 2011
  • A fusion algorithm based on the Nonsubsampled Contourlet Transform(NSCT) is proposed to fuse infrared and visible images. A weighted averaging' scheme based on the physical features of infrared and visible images and a selection principle based on the local energy matching are presented for the low frequency subband coefficients and the high frequency subband coefficients, respectively. Experimental results show that the NSCT has a fast computing ability and can provide more image information due to the concentration energy by image processing. As compared to the image fusion algorithm based on pixels, this algorithm has higher fusion performance, and is a Multiscale Geometric Analysis(MGA) tool more suitable for image fusion.

  • loading
  • [1] 毛士艺,赵巍.多传感器图像融合技术综述[J].北京航空航天大学学报 ,2002,28(5):512-518. MAO SH Y,ZHAO W. Comments on multisensor image fusion techniques[J]. J. Beijing University Aeronautics and Astronautics,2002,28(5):512-518.(in Chinese) [2] SIMONE G,FARINA A,MORABITO F C. Image fusion techniques for remote sensing application[J]. Information Fusion,2002,3(1):3-15. [3] 杜宝祥. Contourlet变换在图像处理中的应用研究. 哈尔滨:哈尔滨工程大学 ,2009. DU B X. Recearch on applications of contourlet transform in image processing. Harbin:Harbin Engineering University,2009.(in Chinese) [4] WEN C Y,CHEN J K. Multi-resolution image fusion technique and its application to forensic science[J]. Forensic Science International,2004,140(2-3):217-232. [5] PAN J P,GONG J Y,LU J, et al.. Image fusion based on local deviation and high-pass filtering of wavelet transform[J]. SPIE,2004,5660:191-198. [6] TU T M,HUANG P S,HUNG C L, et al.. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Lett.,2004,1(4):309-312. [7] 宋好好. Contourlet变换在图像分析处理中的应用研究. 上海:上海交通大学 ,2008. SONG H H. Application research on contourlet in image processing. Shanghai:Shanghai Jiaotong University,2008.(in Chinese) [8] HEATHER J P,SMITH M I. Multimodal image registration with applications to image fusion. 2005 7th IEEE International Conference on Information Fusion,Philadelphia,Pa,25-28 July,2005:372-379. [9] 杨俊,赵忠明. 基于Curvelet变换的多聚焦图像融合方法[J]. 光电工程 ,2007,6(1):11-16. YANG J,ZHAO ZH M. Multifocus image fusion method based on curvelet transform[J]. Opto-Electronic Eng.,2007,6(1):11-16.(in Chinese) [10] NIKOLOV S G,HILL P R,BULL D R, et al.. Wavelets for image fusion.(2001-03-06).http://www.tallypaul.pwp.blueyonder.co.uk/papers/nikolov-wif.pdf. [11] SHI W Z,ZHU C Q,TIAN Y, et al.. Wavelet-based image fusion and quality assessment[J]. International J. Appl. Earth Observation and Geoinformation,2005,6(3):241-251. [12] STARCK J L,CANDES E,DONOHO D L. The curvelet transform for image denoising[J]. IEEE T. Image Process.,2002:670-684. [13] CANDES E J,DEMANET L,DONOHO D L. Fast discrete curvelet transform.(2005-01-10).http://www.acm.caltech.edu/emmanuel/paper/FDCT.pdf. [14] 倪伟. 基于多尺度几何分析的图像处理技术研究. 西安:西安电子科技大学 ,2008. NI W. Research on image processing algorithms via multiscale geometric analysis. Xi'an:Xi'an Univeristy of Electronic Science and Technology,2008.(in Chinese) [15] BENDER E J,REESE C E,SVANDERWAL G. Comparison of additive image fusion vs. feature-level image fusion techniques for enhanced night driving[J]. SPIE,2003,4796:140-151.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3754) PDF downloads(1442) Cited by()
    Proportional views

    /

      Return
      Return
        Baidu
        map