[1] TSUCHIZAWA T, YAMADA K, FUKUDA H,
et al.. Microphotonics devices based on silicon microfabrication technology[J].
IEEE J. Select. Top. Quant. Electron., 2005, 11(1):232-240. [2] ALMEIDA V R, XU Q, BARRIOS C A,
et al.. Guiding and confining light in void nanostructure[J].
Opt. Lett., 2004, 29(11):1209-1211. [3] THYLEN L, QIU M, ANAND S. Photonic crystals-a step towards integrated circuits for photonics[J].
Chemphyschem, 2004, 5(9):1268-1283. [4] GOTO T, KATAGIRI Y, FUKUDA H,
et al.. Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates[J].
Appl. Phys. Lett., 2004, 84(6):852-854. [5] CHARBONNEAU R, LAHOUD N, MATTIUSSI G,
et al.. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons[J].
Opt. Express, 2005, 13(3):977-984. [6] ZIA R, SELKER M D, CATRYSSE P B,
et al.. Geometries and materials for subwavelength surface plasmon modes[J].
J. Opt. Soc. Am. A., 2004, 21(12):2442-2446. [7] KUSUNOKI F, YOTSUYA T, TAKAHARA J,
et al.. Propagation properties of guided waves in index-guided two-dimensional optical waveguides[J].
Appl. Phys. Lett., 2005, 86(21):211101-3. [8] PILE D F P, GRAMOTNEV D K. Plasmonic subwavelength waveguides:next to zero losses at sharp bends[J].
Opt. Lett., 2005, 30(10):1186-1188. [9] XIAO S S, LIU L, QIU M. Resonator channel drop filters in a plasmon-polaritons metal[J].
Opt. Express., 2006, 14(7):2932-2937. [10] WANG B, WANG G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides[J].
Opt. Lett., 2004, 29(17):1992-1994. [11] TANAKA K, TANAKA M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide[J].
Appl. Phys. Lett., 2003, 82(8):1158-1160. [12] TANAKA K, TANAKA M, SUGIYAMA T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides[J].
Opt. Express, 2005, 13(1):256-266. [13] LIU L, HAN Z H, HE S L. Novel surface plasmon waveguide for high integration[J].
Opt. Exprress, 2005, 13(17):6645-6650. [14] VERONIS G, FAN S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J].
Appl. Phys. Lett., 2005, 87(13):131102-3. [15] PILE D F P, GRAMOTNEV D K. Channel plasmon-polariton in a triangular groove on a metal surface[J].
Opt. Lett., 2004, 29(10):1069-1071. [16] BOZHEVOLNYI S I, VOLKOV V S, DEVAUX E,
et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J].
Nature, 2006, 440(7083):508-511. [17] 雷建国, 刘天航, 林景全, 等. 表面等离子体激元的若干新应用[J]. 中国光学与应用光学, 2010, 3(5):432-439. LEI J G, LIU T H, LIN J Q,
et al.. New application of surface plasmon polaritons[J].
Chinese J. Optics and Applied Optics, 2010, 3(5):432-439.(in Chinese) [18] 陈泳屹, 佟存柱, 秦莉, 等. 表面等离子体纳米 器技术及应用研究进展[J]. 中国光学, 2012, 5(5):453-463. CHEN Y Y, TONG C ZH, QIN L,
et al.. Progress in surface plasmon polariton nano-laser technologies and applications[J].
Chinese Optics, 2012, 5(5):453-463.(in Chinese) [19] ZIA R, SCHULLER J A, CHANDRAN A,
et al. Plasmonics:the next chip-scale technology[J].
Materials Today, 2006, 9(7):20-27. [20] GUO X, MA Y, WANG Y,
et al.. Nanowire plasmonic waveguides, circuits and devices[J].
Laser Photonics Reviews, 2013, 6(7):855-881. [21] WANG W, YANG Q, FAN F,
et al.. Light propagation in curved silver nanowire plasmonic waveguides[J].
Nano Lett., 2011, 11(4):1603-1608. [22] LUO H, LI Y, CUI H,
et al.. Dielectric-loaded surface plasmon-polariton nanowaveguides fabricated by two-photon polymerization[J].
Appl. Phys. A., 2009, 97(3):709-712. [23] GUO X, QIU M, BAO J,
et al.. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits[J].
Nano Lett., 2009, 9(12):4515-4519. [24] OULTON R F, SORGER V J, GENOV D A,
et al.. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J].
Nature Photon, 2008, 2(8):496-500. [25] OULTON R F, SORGER V J, ZENTGRAF T,
et al.. Plasmon lasers at deep subwavelength scale[J].
Nature, 2009, 461(7264):629-632. [26] DAI D, YANG L, HE S. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires[J].
IEEE J. Lightwave Technol., 2008, 26(6):704-709. [27] DAI D, HE S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement[J].
Opt. Express, 2009, 17(19):16646-16653. [28] FUJⅡ M, LEUTHOLD J, FREUDE W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides[J].
IEEE Photon. Technol. Lett., 2009, 21(6):362-364. [29] ALAM M Z, MEIER J, AITCHISON J S,
et al.. Super mode propagation in low index medium[C]. Photonic Applications Systems Technologies Conference. Optical Society of America, 2007. [30] ALAM M Z, MEIER J, AITCHISON J S,
et al.. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends[J].
Opt. Express, 2010, 18(12):12971-12979. [31] WANG Z, DAI D, SHI Y,
et al.. Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide[C]. Optical Fiber Communication Conference, OSA Technical Digest(CD), Optical Society of America, 2011. [32] ZHU S, LO G Q, KWONG D L. Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform[J].
IEEE Photonics Technology Letters, 2012, 24(14):1224-1226. [33] KIM J T, JU J J, PARK S,
et al.. Hybrid plasmonic waveguide for low-loss lightwave guiding[J].
Opt. Express, 18, 2010, 18(3):2808-2813. [34] HUANG Q, BAO F, HE S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement[J].
Optics Express, 2013, 21(2):1430-1439. [35] DAI D, HE S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots[J].
Opt. Express, 2010, 18(17):7958 16653. [36] KWON M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology[J].
Opt. Express, 2011, 19(9):8379-8393. [37] GOYKHMAN I, DESIATOV B, LEVY U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide[J].
Appl. Phys. Lett., 2010, 97(14):141106-3. [38] KIM J T, JU J J, PARK S,
et al.. Hybrid plasmonic waveguide for low-loss lightwave guiding[J]. Opt. Express, 2010, 18(3):2808-2813. [39] SONG Y, WANG J, LI Q,
et al.. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide[J].
Opt. Express, 2010, 18(12):13173-13179. [40] ZHANG X Y, HU A, WEN J Z,
et al.. Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides[J].
Opt. Express, 2010, 18(18):18945-18959. [41] BIAN Y, ZHENG Z, ZHAO X,
et al.. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration[J].
Optics Express, 2009, 17(23):21320-21325. [42] CHEN L, LI X, WANG G. A hybrid long-range plasmonic waveguide with sub-wavelength confinement[J].
Opt. Communications, 2013, 291:400-404. [43] CHU H, LI E, BAI P,
et al.. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components[J].
Appl. Phys. Lett., 2010, 96(22):221103-3. [44] BIAN Y, ZHENG Z, LIU Y,
et al.. Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement[J].
Opt. Express, 2011, 19(23):22417-22422. [45] WU M, HAN Z, VAN V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale[J].
Opt. Express, 2010, 18(11):11729-11737. [46] ZHU S, LO G Q, KWONG D L. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO
2-Si-SiO
2-Cu nanoplasmonic waveguides[J].
Optics Express, 2012, 20(6):5867-5881. [47] LOU F, WANG Z, DAI D,
et al.. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides[J].
Appl. Phys. Lett., 2012, 100(24):241105-4. [48] GUAN X, CHEN P, WANG X,
et al.. Ultrasmall directional coupler and disk-resonantor based on nano-scale silicon hybrid plasmonic waveguides[C]. Asia Communications and Photonics Conference, OSA Technical Digest(online), Optical Society of America, 2012. [49] WANG J, GUAN X, HE Y,
et al.. Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides[J].
Opt. Express, 2011, 19 (2):838-847. [50] SONG Y, WANG J, YAN M,
et al.. Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter[J].
J. Optics, 2011, 13(7):075002. [51] SONG Y, WANG J, YAN M,
et al.. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor[J].
J. Opt., 2011, 13(7):075001. [52] DAI D, SHI Y, HE S,
et al.. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides[J].
Opt. Express, 2011, 19(24):23671-23682. [53] ZHU S, LO G Q, KWONG D L. Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths[J].
Optics Express, 2012, 20(14):15232-15246. [54] ALAM M Z, AITCHISON J S, MOJAHEDI M. Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer[J].
Opt. Lett., 2012, 37(1):55-57. [55] SUN X, ALAM M Z, WAGNER S J,
et al.. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform[J].
Opt. Lett., 2012, 37(23):4814-4816. [56] CHEE J, ZHU S, LO G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide[J].
Opt. Express, 2012, 20(23):25345-25355. [57] LOU F, DAI D, WOSINSKI L. Ultracompact polarization beam splitter based on a dielectric hybrid plasmonic dielectric coupler[J].
Opt. Lett., 2012, 37(16):3372-3374. [58] CASPERS J N, ALAM M Z, MOJAHEDI M. Compact hybrid plasmonic polarization rotator[J].
Opt. Lett., 2012, 37(22):4615-4617. [59] GUO L, HUO Y, HARRIS S J,
et al.. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide[J].
IEEE Photon. Technol. Lett., 2013, 25(21):2081-2084. [60] ZHOU G, WANG T, PAN C,
et al.. Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement[C]. Group IV Photonics(GFP), 2010 7th IEEE International Conference on, Beijing. IEEE, 2010: 69-71. [61] SUN X, ZHOU L, LI X,
et al.. Design and analysis of a phase modulator based on a metal polymer silicon hybrid plasmonic waveguide[J].
Appl. Optics, 2011, 50(20):3428-3434. [62] ZHU S, LO G Q, KWONG D L. Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators[J].
Opt. Express, 2010, 18(26):27802-27819. [63] SUN R, DONG P, FENG N N,
et al.. Horizontal single and multiple slot waveguides: optical transmission at lambda=1550 nm[J].
Opt. Express, 2007, 15(26):17967-17972. [64] SHENG Z, DAI D, HE S. Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends[J].
Selected Topics in Quantum Electronics, IEEE J., 2009, 15(5):1406-1412. [65] TOURNOISA P, LAUDE V. Negative group velocities in metal-film optical waveguides[J].
Optics Communications, 1997, 137(1):41-45. [66] HONG J M, RYU H H, PARK S R,
et al.. Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application[J].
IEEE Photon. Technol. Lett., 2003, 15(1):72 74. [67] YAMAZAKI T, AONO H, YAMAUCHI J,
et al.. Coupled waveguide polarization splitter with slightly different core widths[J].
J. Lightwave Technol., 2008, 26(21):3528 3533. [68] AUGUSTIN L M, HANFOUG R, VAN DER TOL J J G M,
et al.. A compact integrated polarization splitter/converter in InGaAsP-InP[J].
IEEE Photon. Technol. Lett., 2007, 19(17):1286-1288. [69] AO X, LIU L, LECH W,
et al.. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type[J].
Appl. Phys. Lett., 2006, 89(17):171115-3. [70] GUAN X, WU H, SHI Y,
et al.. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire[J].
Opt. Lett., 2013, 38(16): 3005-3008. [71] LIANG D, FIORENTINO M, OKUMURA T,
et al.. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects[J].
Opt. Express, 2009, 17:20355-20364. [72] DONG P, FENG N N, FENG D,
et al.. GHz-bandwidth optical filters based on high-order silicon ring resonators[J].
Opt. Express, 2010, 18(23):23784-23789. [73] XU Q, SCHMIDT B, PRADHAN S,
et al.. Micrometre-scale silicon electro-optic modulator[J].
Nature, 2005, 435(7040):325-327. [74] WANG J, DAI D. Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring[J].
Opt. Lett., 2010, 35(24):4229-4231. [75] DEKKER R, USECHAK N, FORST M,
et al.. Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides[J].
J. Phys. D:Applied Physics, 2007, 40(14):R249-R271. [76] WANG X, LIN C Y, CHAKRAVARTY S,
et al.. Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides[J].
Opt. Lett., 2011, 36(6):882-884. [77] LI Q, SONG Y, ZHOU G,
et al.. Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss[J].
Opt. Lett., 2010, 35(19):3153-3155. [78] DE LEON I, BERINI P. Amplification of long-range surface plasmons by a dipolar gain medium[J].
Nature Photon., 2010, 4(6):382-387. [79] NOGINOV M A, ZHU G, MAYY M,
et al.. Stimulated emission of surface plasmon polaritons[J].
Phys. Rev. Lett., 2008, 101(22):226806-4. [80] AMBATI M, NAM S H, ULIN-AVILA E,
et al.. Observation of stimulated emission of surface plasmon polaritons[J].
Nano Lett., 2008, 8(11):3998-4001. [81] VAN DEN HOVEN G N, KOPER R J I M, POLMAN A,
et al.. Net optical gain at 1.53 mm in Er-doped Al
2O
3waveguides on silicon[J].
Appl. Phys. Lett., 1996, 68(14):1886-1888. [82] GRANDIDIER J, DES FRANCS G C, MASSENOT S,
et al.. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength[J].
Nano Letters, 2009, 9(8):2935-2939. [83] NEZHAD M P, TETZ K, FAINMAN Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides[J].
Opt. Express, 2004, 12(17):4072-4079. [84] GENOV D A, AMBATI M, ZHANG X. Surface plasmon amplification in planar metal films[J].
IEEE J. Quantum Electron., 2007, 43(11):1104-1108. [85] ALAM M Z, MEIER J, AITCHISON J S,
et al.. Gain assisted surface plasmon polariton in quantum wells structures[J].
Opt. Express, 2007, 15(1):176-182. [86] PLUM E, FEDOTOV V A, KUO P,
et al.. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots[J].
Opt. Express, 2009, 17(10):8548-8551. [87] DAI D, SHI Y, HE S,
et al.. Gain enhancement in a Si hybrid plasmonic nano-waveguide with a low-index or high-index gain medium[J].
Opt. Express, 2011, 19(14):12925-12936.
|